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INTRODUCTION

When a plane shock wave moving through one material meets an interface

with a new material, the shock is transmitted at a different strength into

the "target" material and a new wave is reflected back into the "parent"

material. The strength of the transmitted wave is determined in this report

for the case -when both materials are solid and can be described by a Mie-

Gruneisen equation of scate.

The reflected wave may be either a shock or a rarefaction. In the

first case, the transmitted shock pressure exceeds that in the incident

shock. This occurs generally, but not necessarily, when the target material

is denser than the parent material. In the second case, the reflected

rarefaction, there is a reduction in shock pressure. This situation arises

typically, but not necessarily, when the target material is of lower density

than the parent material. One result of this report is to exhibit the

boundary between these two cases. This boundary can also be interpreted

4as the relation between bulk modulus and density in the target material

such that there is no reflected wave and consequently all of the energy in

the incident wave is transmitted.

This analysis was made to facilitate estimates of the damage incurred

in structures which are strongly shocked, as from hypervelocity projectile

Impact, intensive x-ray exposure, or underground nuclear explosions. Actual

failure of structural materials is incurred as a result of shock-wave

reflection at either a free surface or at a contact surface. The resulting

negative pressure could lead to tensile fracture and possibly spallation

fragments. However, failure criteria will not be considered in this report.

I.
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REFLECTION OF ACOUSTIC WAVES

When a wave is sufficiently weak, whether tensile or compressive,

it is referred to as an acoustic wave and its analysis can be carried out

in considerable detail since the governing equations are linear. The

general solution to the acoustic reflection problem is discussed separately

in this section since an elementary analytical solution is available.

The solution to the nonlinear shock reflection problem discussed in the

body of this report has the acoustic solution of Zq.(l)as a limit when

the shock pressures are well below the bulk modulus of the material. For

the geometry outlined in Fig. 1, the ratio of the pressure after reflection,

p 3) to the pressure before reflection, pl, is

P3 2 2

Pl + P cO/P2 c2 1 + (KOPOKa (1)

where 9 is the density, c is the sound speed based on the bulk modulus,

c = , K is the bulk modulus, and pc = [ is the acoustic impedance.

The result given in Eq. (1) shows that the pressure ratio never exceeds

2 in the acoustic case.

The above result can be used to determine the pressure ratio for a

wave transmitted through a slab of material embedded in a different

material. If the subscripts 1 and 2 are used to denote the outside and

inside materials, respectively, then the ratio of transmitted pressure,

to incident pressure, PI' is

PT 4 p, Cl P2 c2

I (P 1 C1 
+ P2 c 2 )2  (2)

Ii
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F' u4

Region 1 Region 3 Region 4 Region 2

Once-shocked Twice-shocked Once-shocked Unshocked
Parent Material Parent Material Target Material Target Material

PI. Ul P3 = PV' u3 . u4 p4 , u 4  P2 u2 . 0

K, p1 = 1/Vl j KO, P3 =1/V3  2 P4 = 1/V4  K2' P2 =1/V 2

Reflected Contact Transmitted
shock surface shock

Parent Material Target Material

NOTE: A zero subscript, ( )0' denotes the state of unshocked parent
material; although no such material appears in the figure, it
will have bulk modulus K0 and density pO.

Fig. 1--Geometry for the shock reflection problem.

If the acoustic impedance ratio is as large as 10, or as small as 1/10, the

pressure transmitted through the sandwich is 64% of the original. This is

about the greatest reduction 'that might be expected with common materials.

The effect of subsequent reflections within the sandwich may complicate the

result for some applications.

V
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REFLECTION OF SHOCKS IN IDEAL GASES

For ideal gases, the pressure ratio behind the reflected shock for

the geometry of Fig. I is given by Courant and 'Friedrichs(l) where the

target material is treated as a rigid wall:

P3 - PO 4P2+ (3p 2
Pl PO P + PO/Pl

2where p0 is the initial static pressure and p = (y - 1)/(y + 1) depends on

y, the ratio of specific heats. For strong shocks, this simplifies to

P3 - Po 3 - (4)
Pi " PO Y " I Y 4

which is 8 for y = 7/5 and 6 for y = 5/3. For weak shocks, p O/Pl is near

unity and the pressure ratio is near 2, as in the acoustic case when the

target material has infinite acoustic impedance. Thus, the shock-reflects'on

pressure ratios are larger in the ideal gas--strong shock case than in the

acoustic case. It is this fact that motivated the work described here,

since for strong shocks in solido it was not clear whether the large pressure

ratios found in the perfect gas case or the small pressure ratios found in

the acoustic approximation would be more nearly correct.
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EQUATIONS FOR THE MULECTED SHOCK CASE

The geometry for the general shock reflection problem is outlined in

Fig. 1, which defines the four regions that appear in the shock-reflection

prob. em. (Material in the initial state, denoted by a zero subscript, is

not sh' wn in Fig. 1.) The usual shock relations as given in Ref. 1, page 129,

are:

l v1 = P2 v2 , (5)

2 2Pl v1 P2 + P 2 v2  , (6)

pl/p I + E1 + i v 2 = P2/ 2 + F + v 2
2  (7)

where v1 denotes the relative velocity of the material and the shock. In

addition to these conservation equations, an equation of state of the Mie-

Gruneisen form,

p = G(V) E/V + F(V), (8)

is assumed in order to complete the physical description of the problem.

A review of the experimental data in Ref. 2 suggests that if the Gruneisen

ratio G(V) has the form

G(V) = G V/Vo , (9)

then the data are 1n many instances fitted better than if G(V) is taken to

be a constant. This assumption also leads to convenient analytical ex-

pressions in the calculation of isentropes. In the present analysis, GO

is taken to be 2, which is typical, but not necessarily accurate, for most

materials. The best choice of G for various materials generally lies in

the range from 1.5 to 3.0, but the final results appear insensitive to the

value of G as indicated in Fig. 2.

The determination of F(V) follows from the empirical observation(2)

that the shock velocity, u8, and the material velocity, up, behind a shock

into a material at rest are related through the equation

u s C + WO . . (10 )
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The empirical parameter, S, usually has values in the range from 1.2 to 2.0

and was taken to be 1.5 in the calculations. As -ith Go, subsequent results

appear insensitive to the value of S, as illustrated in Fig. 3. Combining

this equation with the shock relations of Eqs. (5), (6), and (7) leads to

F(v) = Ke(1 - Go e/2)/(l - se) 2 = K f(e) , e = 1 - v/V (11)

where K is the bulk modulus of the material and V is the initial specific

volume. Equations for the pressure and velocity in Region 4 behind the

transmitted shock can be obtained from the first two shock equations, (5)

and (6); in terms of the compression e4, where

e4 = 1 -V4/V2 . (12)

(The initial s-pecific volume, V, is V2 in this instance.) These relations

are:

f(e 4 )
P4. = "2 1 - Go0 e4/2 (13

and

u4 _-e 4 P4 v . (!4)

(It will be assumed that the Gruneisen ratio is the same in both materials.)

A comparison of the shock pressure from Eq. (13) with the more detailed

treatment by Tillotson in Ref. 3 is given in Fig. 4, which shows the

Hugoniot for pressures up to 100 Mbar in copper. (Copper is a convenient

example, since it has the se2.ected values of GO = 2 and S = 1.5.)

Equations for the compression e 3 and the pressure p3 in Region 3 are

obtained by considering the conservation equations across the reflected shock.

The appropriate equations relating these conditions in Regions 3 and 1 are,

after appropriate manipulations of Eqs. (5) through (9),

(u3 _ - )0 3B -- 1 + -P j.Vo (15)

TP p V
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p [1 + Go (9 9)/2]+K[ e) f f(e1)](6P3 3 O[ '3 (16)
1 1- %(3 - 01)/2

where

e3 = 1 - v3/v o e = 1 - vj/v o  (17)

The additional requirement that the pressure and velocity be

continuous between Regions 3 and 4 completes the formulation of the

problem.

K
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EQUATIONS FOR THE REFLECTED RAREFACTION CASE

Region 3 of Fig. 1 may contain a rarefaction wave under some
conditions. If this is the case, the pressure will vary isentropically

in that region, and it is necessary to have an equation rolating pressure

and specific volume on the isentrope, This is obtained by considering

the equation of state

p = G 0 E/V0 + F(V) (18)

In order that dS = (dE + pdV)/T be a perfect differential, it is necessary

that

T K~ aT T avl

or, substituting from the equation of state,

EV- + T Go/V o = G E/V o + F(V),

where the subscripts denote differentiation with respect to that variable.
(4)

The characteristic equations are

dV dT dE
- o TGj F(V) + Go E/Vo'

Two independent solutions containing arbitrary constants c, and c2 are

obtained by combining the first equation with the second and then that

equation with the third:

GoV1/Vor v %v/v°0c = H(V) + E e where H(V) - f e F(V) dV

c +G V/ ln T
2 00V

leading to. the general solution

E e [..)V H(V) + J (T e 0/0)] (9
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where J denotes an arbitrary function. H(V) is plotted in nondimensional

form in ?ig. 5 for the function given by Eq. (11). If the specific heat

is assumed constant and equal to CV, then

G0V/VE = Cv = J(T 0 0

and therefore the function J must be linear in its argument. It follows

that the equation of state is

- GoV/V ,fG °~V/V°.
U = C T - e V 0 F(V) dV (20)

and the entropy is given by

S - S = Cv  CV To

where S is an arbitrary constant. Combining this expression with the

equation of state, the isentrope connecting the pressures in Regions 1 and 4

is given by

[P- " F(V 1
) ] e GOVI /VO + Go H (VI)/V0 = [p3 - F(V3 )]eG

0V 3/V0

+ Go H(v3)/v o  (22)

The Riemann integral' is used to find the relation between u and V

along the particle paths. The appropriate solution for the current problem

is

V1

U 1
v  £ v 1  w(v3) .(23)

Ul " u3 =v = W(Vl) " ) "3IV3
The sound speed, c, appearing in the above integrand can be obtained from

the equation

*- '- _________
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S " - .F +%PVo (24)

and the expression below for the pressure on an isentrope from the point

(V3, p3 ) in the p-V plane:

-GoV/V0 , eGO0V 3/Vo0

p = F(V) + e tG0 [H(V) - H(V3 )]/V0 + .PB - F(V3 )] e} (25)

II
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CALCULATIONS

The equations for shock transmission were solved by an iteration

technique using the IBM-7040. A general outline of the solution procedure

is given in the flow diagrams on the two following pages. The calculations

were done using nondimensiona. pressures and velocities, which are denoted by

bars. The following list relates the quantities in the flow diagram to those

used in the theoretical discussions above.

p1 = pl/K0  p2 = P2 /K2  P- 4 = /K

p 2=P 3  0 p41  p/ 2

= u/co = u2/c2  u3 = u3/co ' u 4 u= o2

2 2
c 0 KcP O  c 2  K2/- 2

= 1(V)/K, 0= 1 - V/v o

(e) =Cw(v)
.0
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SUMMARY AND CONCLUSIONS

The purpose of this report is to provide a survey of the pressure ratios,

PPl' ,encountered in the shock reflection process. In Figs. 6-12 the results

of the calculations are given for initial shock pressures in the range from

zero to ten times the bulk modulus, with both the density and bulk modulus

ratios being varied in the two materials. When the transmitted pressure is

less than that in the incident wave, the reflected wave is a rarefaction, and

when it exceeds that in the incident wave, the reflected wave is a shock. The

curves for the two cases fit smoothly together, as might be expected on

theoretical grounds, by noting that when the pressure ratio is near unity the

reflected wave is weak, and thus the Hugoniot and isentropes for the reflected

wave have a third-order contact.l " The pressure ratios lie between 1/3 and

3 in the region of the parameters investigated, which includes bulk modulus and

density ratios from 1/10 to 10. The velocity ratios, u3/ul, are plotted in

Figs. 13 through 19.

The "complete transmission" curves separating the reflected shock case

from the reflected rarefaction case are shown in Fig. 20 as a relation between

bulk modulus ratio, K/-/Ko, and density ratio) p2/pO . This relation depends

on shock strength. When the shock is weak, the complete transmission curve

is given by acoustic theory and is K2p2 = KopO . As the incident shock strength

is increased, the curve separating the two cases approach the line p2/Po 1.

Thus for strong shocks complete transmission requires only that the density

ratio be near unity. The density ratio is therefore more important than the

bulk modulus in determining the transmitted shock pressures for strong shocks.

This is to be expected on physical grounds, since at higher pressures materials

begin to behave as a gas and the bulk-modulus terms in the Mie-Gruneisen

equation become relatively small.

I
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Fig. 20--The boundary between the reflected shock case and the reflected
rarefaction case as a function of bulk modulus ratio, K2 /K, an density
ratio, P/p The boundary depends on shock strength, p hich is ex-
pressed Tilnits of the bulk modulus, K, in the diagram. If the para-
meters are such that a point lies on th boundary there is no reflected
wave.
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